A Compact Viral Processing Proteinase/Ubiquitin Hydrolase from the OTU Family
نویسندگان
چکیده
Turnip yellow mosaic virus (TYMV)--a member of the alphavirus-like supergroup of viruses--serves as a model system for positive-stranded RNA virus membrane-bound replication. TYMV encodes a precursor replication polyprotein that is processed by the endoproteolytic activity of its internal cysteine proteinase domain (PRO). We recently reported that PRO is actually a multifunctional enzyme with a specific ubiquitin hydrolase (DUB) activity that contributes to viral infectivity. Here, we report the crystal structure of the 150-residue PRO. Strikingly, PRO displays no homology to other processing proteinases from positive-stranded RNA viruses, including that of alphaviruses. Instead, the closest structural homologs of PRO are DUBs from the Ovarian tumor (OTU) family. In the crystal, one molecule's C-terminus inserts into the catalytic cleft of the next, providing a view of the N-terminal product complex in replication polyprotein processing. This allows us to locate the specificity determinants of PRO for its proteinase substrates. In addition to the catalytic cleft, at the exit of which the active site is unusually pared down and solvent-exposed, a key element in molecular recognition by PRO is a lobe N-terminal to the catalytic domain. Docking models and the activities of PRO and PRO mutants in a deubiquitylating assay suggest that this N-terminal lobe is also likely involved in PRO's DUB function. Our data thus establish that DUBs can evolve to specifically hydrolyze both iso- and endopeptide bonds with different sequences. This is achieved by the use of multiple specificity determinants, as recognition of substrate patches distant from the cleavage sites allows a relaxed specificity of PRO at the sites themselves. Our results thus shed light on how such a compact protein achieves a diversity of key functions in viral genome replication and host-pathogen interaction.
منابع مشابه
Deubiquitinating function of adenovirus proteinase.
The invasion strategy of many viruses involves the synthesis of viral gene products that mimic the functions of the cellular proteins and thus interfere with the key cellular processes. Here we show that adenovirus infection is accompanied by an increased ubiquitin-cleaving (deubiquitinating) activity in the host cells. Affinity chromatography on ubiquitin aldehyde (Ubal), which was designed to...
متن کاملOvarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses.
Ubiquitin (Ub) and interferon-stimulated gene product 15 (ISG15) reversibly conjugate to proteins and mediate important innate antiviral responses. The ovarian tumor (OTU) domain represents a superfamily of predicted proteases found in eukaryotic, bacterial, and viral proteins, some of which have Ub-deconjugating activity. We show that the OTU domain-containing proteases from nairoviruses and a...
متن کاملRegulation of A20 and other OTU deubiquitinases by reversible oxidation
Protein ubiquitination is a highly versatile post-translational modification that regulates as diverse processes as protein degradation and kinase activation. Deubiquitinases hydrolyse ubiquitin modifications from proteins and are hence key regulators of the ubiquitin system. Ovarian tumour deubiquitinases comprise a family of fourteen human enzymes, many of which regulate cellular signalling p...
متن کاملInhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus
The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions o...
متن کاملMolecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains.
Crimean Congo hemorrhagic fever virus (CCHFV) is a deadly human pathogen that evades innate immune responses by efficiently interfering with antiviral signaling pathways mediated by NF-κB, IRF3, and IFNα/β. These pathways rely on protein ubiquitination for their activation, and one outcome is the modification of proteins with the ubiquitin (Ub)-like modifier interferon-stimulated gene (ISG)15. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013